27 research outputs found

    Universal quantum information compression and degrees of prior knowledge

    Get PDF
    We describe a universal information compression scheme that compresses any pure quantum i.i.d. source asymptotically to its von Neumann entropy, with no prior knowledge of the structure of the source. We introduce a diagonalisation procedure that enables any classical compression algorithm to be utilised in a quantum context. Our scheme is then based on the corresponding quantum translation of the classical Lempel-Ziv algorithm. Our methods lead to a conceptually simple way of estimating the entropy of a source in terms of the measurement of an associated length parameter while maintaining high fidelity for long blocks. As a by-product we also estimate the eigenbasis of the source. Since our scheme is based on the Lempel-Ziv method, it can be applied also to target sequences that are not i.i.d.Comment: 17 pages, no figures. A preliminary version of this work was presented at EQIS '02, Tokyo, September 200

    The Hole Argument in Homotopy Type Theory

    Get PDF

    Universes and Univalence in Homotopy Type Theory

    Get PDF

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The Use of the Information Theoretic Entropy in Thermodynamics

    Get PDF
    When considering controversial thermodynamic scenarios such as Maxwell's demon, it is often necessary to consider probabilistic mixtures of states. This raises the question of how, if at all, to assign entropy to them. The information-theoretic entropy is often used in such cases; however, no general proof of the soundness of doing so has been given, and indeed some arguments against doing so have been presented. We offer a general proof of the applicability of the information-theoretic entropy to probabilistic mixtures of macrostates, making clear the assumptions on which it depends, in particular a probabilistic version of the Kelvin statement of the Second Law. We briefly discuss the interpretation of our result

    A Primer on Homotopy Type Theory Part 1: The Formal Type Theory

    Get PDF
    This Primer is an introduction to Homotopy Type Theory (HoTT). The original source for the ideas presented here is the ``HoTT Book'' -- Homotopy Type Theory: Univalent Foundations of Mathematics published by The Univalent Foundations Program, Institute for Advanced Study, Princeton. In what follows we freely borrow and adapt definitions, arguments and proofs from the HoTT Book throughout without always giving a specific citation. However, whereas that book provides an introduction to the subject that rapidly involves the reader in advanced technical material, the exposition in this Primer is more gently paced for the beginner. We also do more to motivate, justify, and explain some aspects of the theory in greater detail, and we address foundational and philosophical issues that the HoTT Book does not. In the course of studying HoTT we developed our own approach to interpreting it as a foundation for mathematics that is independent of the homotopy interpretation of the HoTT Book though compatible with it. In particular, we interpret types as concepts; we have a slightly different understanding of subtypes and the Curry-Howard correspondence; and we offer a novel approach to the justification of the elimination rule for identity types in section 7 below (though it builds on a known mathematical result). These ideas are developed in detail in our papers downloadable from the project website: http://www.bristol.ac.uk/arts/research/current-projects/homotopy-type-theory/. While our ideas and views about some important matters differ from those presented in the HoTT Book the theory we present is essentially the same. Part I below introduces, explains and justifies the basic ideas, language and framework of HoTT including propositional logic, simple types, functions, quantification and identity types. In the subsequent parts of this Primer we extend the theory to predicate logic, the theory of the natural numbers, topology, the real numbers, fibre bundles, calculus and manifolds, and the very important `Univalence axiom

    The Connection between Logical and Thermodynamical Irreversibility

    Get PDF
    There has recently been a good deal of controversy about Landauer's Principle, which is often stated as follows: The erasure of one bit of information in a computational device is necessarily accompanied by a generation of kT ln 2 heat. This is often generalised to the claim that any logically irreversible operation cannot be implemented in a thermodynamically reversible way. John Norton (2005) and Owen Maroney (2005) both argue that Landauer's Principle has not been shown to hold in general, and Maroney offers a method that he claims instantiates the operation reset in a thermodynamically reversible way. In this paper we defend the qualitative form of Landauer's Principle, and clarify its quantitative consequences (assuming the second law of thermodynamics). We analyse in detail what it means for a physical system to implement a logical transformation L, and we make this precise by defining the notion of an L-machine. Then we show that logical irreversibility of L implies thermodynamic irreversibility of every corresponding L-machine. We do this in two ways. First, by assuming the phenomenological validity of the Kelvin statement of the second law, and second, by using information-theoretic reasoning. We illustrate our results with the example of the logical transformation 'reset', and thereby recover the quantitative form of Landauer's Principle

    Identity in HoTT, Part I

    Get PDF
    Homotopy type theory (HoTT) is a new branch of mathematics that connects algebraic topology with logic and computer science, and which has been proposed as a new language and conceptual framework for math- ematical practice. Much of the power of HoTT lies in the correspondence between the formal type theory and ideas from homotopy theory, in par- ticular the interpretation of types, tokens, and equalities as (respectively) spaces, points, and paths. Fundamental to the use of identity and equality in HoTT is the powerful proof technique of path induction. In the ‘HoTT Book’ this principle is justified through the homotopy interpretation of type theory, by treating identifications as paths and the induction step as a homotopy between paths. This is incompatible with HoTT being an au- tonomous foundation for mathematics, since any such foundation must be able to justify its principles without recourse to existing areas of mathemat- ics. In this paper it is shown that path induction can be motivated from pre-mathematical considerations, and in particular without recourse to ho- motopy theory. This makes HoTT a candidate for being an autonomous foundation for mathematics

    Does Homotopy Type Theory Provide a Foundation for Mathematics?

    Get PDF
    Homotopy Type Theory (HoTT) is a putative new foundation for mathematics grounded in constructive intensional type theory, that offers an alternative to the foundations provided by ZFC set theory and category theory. This paper explains and motivates an account of how to define, justify and think about HoTT in a way that is self-contained, and argues that it can serve as an autonomous foundation for mathematics. We first consider various questions that a foundation for mathematics might be expected to answer, and find that the standard formulation of HoTT as presented in the ``HoTT Book'' does not answer many of them. More importantly, the way HoTT is developed in the HoTT Book suggests that it is not a candidate \emph{autonomous} foundation since it explicitly depends upon other fields of mathematics, in particular homotopy theory. We give an alternative presentation of HoTT that does not depend upon sophisticated ideas from other parts of mathematics, and in particular makes no reference to homotopy theory (but is compatible with the homotopy interpretation). Our elaboration of HoTT is based on a new interpretation of types as \emph{mathematical concepts}, which accords with the intensional nature of the type theory
    corecore